\qquad

Data Representation, Logic, Huffman Coding, Binary Numbers

DUE: $3: 30 \mathrm{pm}$ (start of class) Monday November, $30^{\text {th }}$. Please staple all sheets together BEFORE class.

Goal: The purpose of this assignment is to get a little practice with binary numbers, think about representing data digitally, and review basic logic as the foundation of how computers compute.

Exercises:

Binary Numbers

1 Convert 10 base 10 to base 2 . \qquad
2 Convert 16 base 10 to base 2 . \qquad
3 Convert 32 base 10 to base 2 . \qquad
4 Convert 217 base 10 to base 2. \qquad
5 Convert RGB color $(128,0,255)$ to base 2 . \qquad , \qquad , \qquad)
6 Add 1101011 base 2 to 1011100 base 2, SHOW YOUR WORK.
7 Add 1011 base 2 to 110 base 2. SHOW YOUR WORK.

$$
\begin{array}{rr}
1101011 & 1011 \\
+1011100 & +110 \\
\hline
\end{array}
$$

8 What letters does this binary (base 2) data correspond to assuming it is in ASCII? $01001010,01100001,11110111,00110000=$ \qquad , \qquad , \qquad ,

ASCII	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1
0000	Nu	s_{H}	s_{x}	${ }^{\mathrm{E}} \times$	E_{T}	E_{o}	A_{K}	B_{L}	${ }^{\text {B }}$	H_{T}	$L_{\text {F }}$	${ }^{\text {r }}$	F_{F}	c_{R}	s_{0}	s_{1}
0001	D_{L}	D_{1}	D_{2}	D_{3}	D_{4}	N_{K}	s_{v}	E_{E}	c_{N}	E_{M}	s_{B}	E_{c}	$\mathrm{F}_{\text {s }}$	G_{s}	$\mathrm{R}_{\text {s }}$	u_{s}
0010		!	"	\#	\$	\%	\&	'	()	*	$+$,	-	.	$/$
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	$=$	$>$?
0100	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
0101	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	\wedge	-
0110	-	a	b	C	d	e	f	9	h	i	j	k	1	m	n	\bigcirc
0111	P	q	r	S	t	u	V	W	X	Y	Z	\{	\|	\}	~	D_{T}
1000	${ }_{0}$	${ }^{8} 1$	8_{2}	${ }^{8}$	${ }^{\text {I }}$ N	N_{L}	s_{s}	$\mathrm{E}_{\text {S }}$	$\mathrm{H}_{\text {s }}$	H_{3}	$\mathrm{r}_{\text {s }}$	P_{D}	P_{v}	${ }_{\text {R }}$	s_{2}	s_{3}
1001	${ }^{\text {d }}$ c	P_{1}	P_{z}	S_{E}	c_{c}	M_{M}	s_{p}	E_{p}	o_{8}	o_{0}	$\mathrm{a}_{\text {A }}$	$\mathrm{c}_{\text {s }}$	s_{T}	$\mathrm{o}_{\text {s }}$	P_{M}	A_{P}
1010	${ }^{\text {a }}$ O	i	¢	£	¢	$¥$	I	§	\cdots	(c)	0^{*}	"	\neg	-	(R)	-
1011	-	\pm	2	${ }^{3}$	-	μ	4	-	,	1	-	"	1/4	1/2	3/4	$\dot{\text { ¿ }}$
1100	A	Á	A	A	Ä	Å	厌	Ç	E	É	\hat{E}	E	亡	Í	\hat{I}	İ
1101	Đ	N	○	\bigcirc	Ô	O	Ö	\times	\varnothing	Ù	U'	Û	Ü	Y'	P	β
1110	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	i	í	î	1
1111	б	n	ò	ó	ô	õ	ö	\div	\varnothing	ù	ú	û	ü	ý	P	y

Name: \qquad

Logic

9 Complete the following truth tables.
(a) NOT $(p$ OR q)

p	q	p OR q	NOT $(p$ OR $q)$
1	1		
1	0		
0	1		
0	0		

(b) p AND (NOT q)
(c) p AND q AND r

p	q	r	p AND q	$(p$ AND q) AND r
1	1	1		
1	0	1		
0	1	1		
0	0	1		
1	1	0		
1	0	0		
0	1	0		
0	0	0		

p	q	NOT q	p AND (NOT q)
1	1		
1	0		
0	1		
0	0		

10 Using the 3 basic logic gates shown here, draw logic diagrams for the following logical statements.

$-\infty$	OR	NOT
AND	OR	

a $\operatorname{NOT}(\mathrm{P}$ OR Q)
b (A OR B) AND (NOT C)
11 Write the logical statement that corresponds to the following logic diagram.

Name:
Huffman Coding (Please attach a separate sheet of paper for the Huffman trees.)
12
a Generate a binary Huffman tree from the following letter frequencies for the word bananarama.

letter	b	a	n	r	m
frequency	1	5	2	1	1

b Using the binary Huffman tree you created for (a), give the binary Huffman encoding for the letter sequence barn.

13
a Generate a binary Huffman tree from the letter frequencies in the tongue twister: She sells sea shells by the seashore. Do not include the space character in your tree.
b Using the binary Huffman tree you created for (a), give the binary Huffman encoding for the letter sequence share. \qquad
14 Create the Huffman tree that goes with the following frequency table.

letter	c	s	r	t	e
frequency	1	2	3	4	7

